Abstract - In this paper we present a method for solving the Diophantine equation, first we find the polynomial solution for the PELL’S equation by the method of continued fractions then present the integral solution of the Diophantine equations. Theorems are discussed to demonstrate the continue fraction method.

Keywords - Diophantine equations, PELL’S equations and Continue fraction method.

I. INTRODUCTION

An equation which has two or more than two unknowns is called an indeterminate equation. More generally, a system of equations is called indeterminate if the number of equations is less than that of the unknowns. Diophantus, one of the last Alexandrian Mathematicians of 3rd century devoted himself to algebra. He proposed many indeterminate problems in this Arithmetic. He was content with a single numerical rational solution, although the problems usually have infinitely many rational solution and often integral solutions. Because he some times restricted his solutions to integer, in his honour, his name is attached to the kind of indeterminate equations for which the values of the variables are integers and study of such equation is known as DIOPHANTINE ANALYSIS. One can easily understand that Diophantine problems offer unlimited field for research by reason of their variety.

This dissertation consists of three chapters. In chapter 1, we present of polynomial solutions for the PELL’s EQUATIONS \(A^2 - DB^2 = \pm 1 \) by employing the method of continued fractions.

In chapter 2, we present integral solutions of the Diophantine Equations

\[
\begin{align*}
i) & \quad A^n h = B^n + C^n + D^n \quad (h = 1, 2) \\
ii) & \quad A^n h + A^n h = B^{2h} + C^{2h} + D^{2h} \quad (h = 1, 2)
\end{align*}
\]

In chapter 3, we are consider the famous Fermat’s theorem and present an elegant way of proving the above theorem.

II. POLYNOMIAL SOLUTIONS FOR THE PELL’S EQUATION \(A^2 - DB^2 = \pm 1 \)

Theorem 1

Suppose \(D = 4t^2 + 12t + 5 \) where \(t \) is any natural number then \(a + b\sqrt{D} \) is the fundamental solution of \(A^2 - DB^2 = \pm 1 \).

Proof:

For real \(x \), let the symbol \(\lceil x \rceil \) denote the greatest integer \(\leq x \). We have \((2t + 2) < \sqrt{D} < (2t + 3) \) and so \(\lceil D \rceil = 2t + 2 \). Now,
expanding D into a continued fraction expansion, we obtain

$$\sqrt{D} = \left[\sqrt{D} \right] + \sqrt{4t^2 + 12t + 5 - (2t + 2)}$$

$$= (2t + 2) + \frac{1}{4t + 1}$$

$$= (2t + 2) + \frac{1}{\sqrt{4t^2 + 12t + 5 + (2t + 2)}}$$

$$= (2t + 2) + \frac{1}{4t + 1}$$

$$= \frac{1}{t + \frac{8t + 4}{4\sqrt{4t^2 + 12t + 5 + (2t + 1)}}}$$

$$= \cdots$$

$$= [2 + 2, 1, t, 2, t, 1, 4t + 4]$$

The penultimate convergent is

$$2t + 2 + \frac{1}{2 + \frac{1}{t + \frac{1}{2 + \frac{1}{t + \cdots}}}}$$

$$= 2t + 2 + \frac{1}{1 + \frac{1}{t + \frac{1}{2 + \frac{1}{t + \cdots}}}}$$

$$= 2t + 2 + \frac{1}{1 + \frac{1}{t + \frac{1}{2t + 3}}}$$

$$= 2t + 2 + \frac{1}{1 + \frac{2t + 3}{2t + 4t + 1}}$$

$$= 2t + 2 + \frac{2t^2 + 4t + 1}{2t^2 + 6t + 4}$$

$$= \frac{4t^3 + 18t^2 + 29t + 9}{2t^2 + 6t + 4}$$

Thus we get the relation

$$(4t^3 + 18t^2 + 29t + 9)^2 - (4t^3 + 12t + 5)(2t^2 + 6t + 4)^2 = 1$$

Theorem 2:

Suppose $D = m^2t^4 + 2mnt^3 + n^2t^2 + mt + n$ where m, n, t are any natural numbers with mn=0. Then $a + b\sqrt{D}$ is the fundamental solution of $A^2 - DB^2 = 1$ where $a = 2mt^3 + 2nt^2 + 1, b = 2t$.

Proof: For real x, let the symbol $\lfloor x \rfloor$ denote the greatest integer $\leq x$. We have $(mt^2 + nt) < D < (mt^2 + nt^2)$ and so $\lfloor \sqrt{D} \rfloor = mt^2 + nt$. Now, expanding \sqrt{D} in to a continued fraction expansion,

$$\sqrt{D} = (mt^2 + nt) + \frac{1}{4t + 1}$$

$$= (mt^2 + nt) + \frac{1}{t + \frac{8t + 4}{4\sqrt{4t^2 + 12t + 5 + (2t + 1)}}}$$

$$= \cdots$$

$$= \lfloor mt^2 + nt, 2t, 2mt^2 + 2nt \rfloor$$

The penultimate convergent is

$$mt^2 + nt + \frac{1}{2t}$$

Thus we get the relation

$$(2mt^3 + 2nt^2 + 1)^2 - (mt^3 + 2mnt^2 + 2nt^2 + mt + n)(2t)^2 = 1$$

Theorem 3:

Suppose $D = m^2t^4 + 2mnt^3 + n^2t^2 + 2mt + 2n$ where m, n, t are any natural numbers with mn=0. Then $a + b\sqrt{D}$ is the fundamental solution of $A^2 - DB^2 = 1$ where $a = mt^3 + nt^2 + 1, b = t$.

Proof:

Consider $[D] = mt^2 + nt$ and do the proof by the continued fraction doing the above 2 theorem, we get the expansion of

$$\sqrt{D} = \lfloor mt^2 + nt, t, 2mt + 2nt \rfloor$$

The penultimate convergent is

$$\frac{mt^2 + nt^2 + 1}{t}$$

Thus we get the relation

$$(mt^3 + n^2t^2 + 2mt + 2n)^2 = 1$$

FOR THE PELL’S EQUATION $A^2 - DB^2 = -1$

Theorem 4:

If $D = 4t^2 + 4t + 5$ where t is any natural number then $L + M\sqrt{D}$ is the fundamental solution of $A^2 - DB^2 = -1$ where $L = 4t^3 + 6t^2 + 6t + 2, m = 2t^2 + 2t + 1$

Proof:
For real x, let the symbol $[x]$ denote the greatest integer $\leq x$. We have $(2t+1) < \sqrt{D} < (2t+2)$, and so $\lfloor \sqrt{D} \rfloor = 2t+1$. Now, expanding \sqrt{D} into a continued fraction expansion, we obtain

$$\sqrt{D} = [D] + \frac{1}{t + \frac{1}{t + \frac{1}{t + \frac{1}{2t+1}}}}$$

$$= (2t+1) + \frac{1}{t + \frac{1}{t + \frac{1}{2t+1}}}$$

$$= (2t+1) + \frac{1}{t + \frac{1}{t + \frac{1}{2t+1}}}$$

$$= \frac{4t^3 + 6t^2 + 6t + 2}{2t^2 + 2t + 1}$$

Thus, we get the solution

$$\left(4t^3 + 6t^2 + 6t + 2\right)^2 - \left(4t^2 + 4t + 5\right)(2t^2 + 2t + 1)^2 = -1$$

Theorem 5:
If $D = 16t^2 + 8r^2 + 9t^2 + 6t + 2$ where t is any natural number, then $L + M \sqrt{D}$ is the fundamental solution of $A^2 - DB^2 = -1$ where $L = 16t^4 + 4r^4 + 8r^2 + 3t + 1$, $m = 4t^2 + 1$.

Proof:
Consider $\lfloor \sqrt{D} \rfloor = 2t^2 + t + 1$ and do the proof by the expansion of \sqrt{D} in a continued fraction. We obtain $|4t^2 + t + 1, 2t, 2t, 8r^2 + 2t + 2|$. The penultimate convergent is $16t^4 + 4r^4 + 8r^2 + 3t + 1$.

Thus we get the relation

$$\left(16t^4 + 4r^4 + 8r^2 + 3t + 1\right)^2 - \left(16t^4 + 8r^4 + 9t^2 + 6t + 2\right)(4t^2 + 1)^2 = -1$$

Theorem 6:
If $D = 4r^2 + 4t^2 + 2$, where t is any natural number ≥ 2, then $L + M \sqrt{D}$ is the fundamental solution of $A^2 - DB^2 = -1$ where $L = 4t^4 - 4r^4 + 2t^2 - 1$, $M = 2t^2 - 2t + 1$.

Proof:
Consider $\lfloor \sqrt{D} \rfloor = 2t^2$ and do the proof by the expansion of \sqrt{D} in a continued fraction. We obtain $|2t^2, t - 1, 1, t - 1, 4t^2|$. The penultimate convergent is $4t^6 - 4t^4 + 2t^2 + 2t - 1$.

Thus we get the relation

$$\left(4t^4 - 4r^4 + 2t^2 + 2t - 1\right)^2 - \left(4t^4 + 4r^4 + 2\right)(2t^2 - 2t + 1)^2 = -1$$

THE GENERAL PELL’S EQUATIONS

Theorem 7:
Let u, v be integer such that $u^2 - Dv^2 = N$, where N is any given non-zero integer. Then $A_{(i)} = Kv^2 \pm u$, $B_{(i)} = V$.

$D_{(i)} = K^2V^2 \pm 2Ku + D$ satisfy $A_{(i)}^2 - D_{(i)}B_{(i)}^2 = N$, where K is any natural number.

Proof:
Given $A_{(i)} = Kv^2 \pm u$

$B_{(i)} = V$

$D_{(i)} = K^2V^2 \pm 2Ku + D$ where K is any natural numbers choose for K any value satisfying $A_{(i)}^2 - D_{(i)}B_{(i)}^2 = N$ from the help of above theorem, one may generate the solution of the general Pell’s equation.

$u^2 - Dv^2 = N'$ where N is a non-zero integer.

Corollary: Let K, t be natural number then $A = Kt^2 \pm 1$, $B = t$, $D = K^2t^2 \pm 2k$ satisfy $A^2 - DB^2 = 1$.

THE DIOPHANTINE EQUATION

$A^2 - DB^2 = \pm 1$.

The solution of the Diophantine equations $A^2 - DB^2 = \pm 1$ may be generated from the solution of the Pell’s equation $u^2 - 2v^2 = \pm 1$.

Theorem 8:
Let u, v be integer such that $u^2 - 2v^k = \pm 1$. Then $A = u \left(V^k \pm 1\right)$, $B = V$, $D = u^2 \pm 4$ satisfy $A^2 - DB^{2k} = \pm 1$.

Diophantine Equations:

A method of constructing special solution of the Diophantine Equations. Also considering finally, knowing the solutions thus providing a solution of the Diophantine equation.

\[
(a^2 + ab + b^2)(c^2 + cd + d^2) = x^2 - xy + y^2
\]

(2)

Where \(x=ac+bd, y=ac+ad+bd\)

we therefore observe that the product of 2 primes of the form \(6K+1\) is again a prime of the form \(6K+1\).

For example:

\(7 \equiv 1 \pmod{6}, 19 \equiv 1 \pmod{6} \)

\(7 \times 19 \equiv 133 \equiv 1 \pmod{6} \)

If \(N\) can be expressed in the form (1) the \(N^n\), above \(n\) being natural number \(>1\) can also be expressed in the same form using the identity (2)

Now we consider the Diophantine Equations.

\[
N^m = x^6 + y^6 + z^6 \quad (h = 1, 2)
\]

where \(N = p^2 + pq + q^2\) → (3)

Setting \(x = -pq\) and substituting \(h = 1,2\) we have in turn in equation (3), we obtain respectively.

\[
y + z = N - x = p^2 + pq + q^2 + pq = (p + q)^2 \quad \text{→ (4a)}
\]

\[
y^2 + z^2 = N^2 - x^2 = (N + x)(N - x) = (p^2 + q^2)(p + q)^2 \quad \text{→ (4b)}
\]

Consider the identity

\[
(y - z)^2 = 2\left(y^2 + z^2\right) - (y + z)^2
\]

Using equation (4a), (4b) we have

\[
(y - z)^2 = 2\left((p^2 + q^2)(p + q)^2 - (p + q)^4 \right)
\]

\[
= p + q - 2pq
\]

\[
= (p^2 + q^2 - 2pq)
\]

\[
(y - z)^2 = (p^2 - q^2) \quad \text{→ (5)}
\]

Taking +ve square root

\[
(y - z) = (p^2 - q^2) \quad \text{→ (5a)}
\]

From (4a) & (5a) we obtain

\[
y = p^2 + pq, \quad z = q^2 + pq
\]

Substituting the values of \(x,y,z\) in (3) we obtain the identities.

\[
(p^2 + pq + q^2) \equiv (-pq) + \left(p^2 + pq + q^2\right)
\]

\[
(p^2 + pq + q^2) \equiv (-pq)^2 + \left(p^2 + pq + q^2\right)^2
\]

(6)

Note that we obtain the same equation (6) when we substitute the –ve square root in equation (5)
If \(N = C(p^2 + pq + q^2) \) where \(C \) has only prime factors of the form \(6K+5 \) or \(2 \), we multiply the system \((3) \) by \(C \) and obtain the same identities \((6) \).

Also then

\[
N^n = C^n \left(p^2 + pq + q^2 \right)^n, n > 1
\]

\[= C' \left(p'^2 + p'q' + q'^2 \right) \]

where \(C', p', q' \) are integer

\[N^{2n} = C^2 \left(p^2 + q'p' + q'^2 \right)^2\]

Thus there exists integers \(x, y, z \) such that

\[
p^2 + q'p' + q'^2 = x^2 + y^2 + z^2
\]

and we have

\[N = 247 = (-42) + 51 + 238 = (-77) + 126 + 198\]

\[N^2 = 247^2 = (-42)^2 + 51^2 + 238^2 = (-77)^2 + 126^2 + 198^2\]

and with \((i2) \) we have

\[N^3 = (-17391) + 52360 + 26040 = 1406^2 + 1406(2983) + 2983^2 \]

\[N^4 = (-194098) + 610934 + 13092387 \]

The above analysis leads to the following result stated as

Theorem 1: If the integer \(n > 0 \) and \(N \) a natural number having at least one prime factor of the form \(6K+1 \), the diophantine equations.

\[
\left(\begin{array}{c} N^n \\ N \end{array} \right) = \left(\begin{array}{c} x_1 + x_2 + x_3 \\ x_1^2 \end{array} \right)
\]

have always a solution.

Result 1:

\[
p^2 + pq + q^2 \]

remains unaltered if we replace \(p \) by \(p+q \) and \(q \) by \(-q \) or if we replace \(p \) by \(p+q \) and \(q \) by \(-p \)

\[(i.e): \]

\[
p^2 + pq + q^2 = (p+q)^2 + (p+q)(-q) + (-q)^2
\]

\[
= (p+q)^2 + (p+q)(-p) + (-p)^2
\]

For each of the above substitutions for \(p \) and \(q \) the 3 numbers \(-pq, p^2 + pq, q^2 + pq \) are only permutations leading to the same identities \((6) \).

Result 2:

If we interchange either \(a, b \) or \(c, d \) (but not both simultaneously) in the form \((2) \) we get a new set of values of \(A \) & \(B \) (which is the same for either interchange) through the product of LHS of \((2) \) does not change.

Example:

\[
\begin{align*}
N &= 247 = 13 \times 19 = (1^2 + (1)(3)) + (2^2 + (2)(3))^2 \\
&= (17)^2 - (17)(14) + 14^2 = 3^2 + 3(14) + 14^2 \quad \to (i1)
\end{align*}
\]

\[
= (3^2 + 3(14) + 14^2)(2^2 + 2(3) + 3^2) = 11^2 - 11(18) + 18^2 = 7^2 + 7(11) + 11^2 \quad \to (iii1)
\]

We have

\[N^2 = 247^2 = (-42) + 51 + 238 = (-77) + 126 + 198\]

\[N^3 = (-17391) + 52360 + 26040 = 1406^2 + 1406(2983) + 2983^2 \]

\[N^4 = (-194098) + 610934 + 13092387 \]

and with \((i2) \) we have

\[N^5 = (-17391) + 52360 + 26040 = 1406^2 + 1406(2983) + 2983^2 \]

\[N^6 = (-194098) + 610934 + 13092387 \]

The identities \((6) \) can be written as

\[
(p^2 + pq + q^2)(p^2 + pq + q^2) = p^2 + q^2 + p^2 + q^2 \to (7)
\]

\[
= p^4 + q^4 \to (8)
\]

Hence we have

Theorem 2:

If the integer \(n > 0 \) and \(N \) a natural number having at least one set of values of \(U_1, U_2, U_3 \) where \(U_1 + U_2 = U_3 \) which satisfy the Diophantine equations.

\[
N^n = U_1^2 + U_2^2 + U_3^2
\]

\[N^2n + N^{2n} = U_1^4 + U_2^4 + U_3^4 \]

Example 1:

With \((i1) \) and \((i2) \) of above and previous we have

\[247 + 242 = 3^2 + 14^2 + 17^2 = 7^2 + 11^2 + 18^2 \]

\[247 + 247 = 3^2 + 14^2 + 17^2 = 7^2 + 11^2 + 18^2 \]

Now we consider the solutions of Diophantine equations for the value of \(N^3 \) in the expansions

\[
N^3 = x^3 + y^3 + z^3
\]

where \(N = p^2 + pq + q^2 \)

Proceeding as above we have the values

\[
x = p^2, y = q(p+q) \quad \to (9)
\]

\[
y = y^3 \quad \to (10)
\]

\[
z = z^3 \quad \to (10)
\]

\[
N = 247^3 = (p+q)^3 \quad \to (10)
\]

\[
N = 247^3 = (p+q)^3 \quad \to (10)
\]
From equation (9) & (10) \(yz = pq (p^2+q^2) \).

Now consider the identity
\[
(y-z)^2 = (y^2-2yz+z^2) = (y^2+2yz+z^2) - 4yz = \frac{(y+z)^2 - z^2}{2} = \frac{z^2 - x^2}{2} = \frac{z^2 - x^2}{2}.
\]

Also \(y+z = (p+q)^2 \).

Solving the above two equations we get the irrational solutions of \(y \) & \(z \).

A PROOF OF FERMAT’S LAST THEOREM

Fermat’s last theorem is based under the condition \(x^n + y^n = z^n \) which is impossible for natural numbers where \(m \) is greater than 2. (i.e) From the conditions \(x^n + y^n \neq z^n \) where \(x, y, z, m \in N \) and \(m>2 \).

But in the following three definite relations :

(i) \(x^2 + y^2 = z^2 \) (Pythagorean triplet)
(ii) \(x^2 + y^2 < z^2 \)
(iii) \(x^2 + y^2 > z^2 \) (Inequality)

(A) Case (1)

\[
x^2 + y^2 = z^2, \quad x < z, y < z \quad \rightarrow (1)
\]

Multiply equations (1) on both sides by \(x^m-2 \)

\[
x^m x^2 + y^2 x^{m-2} = x^m z^2 \quad \rightarrow (2)
\]

From the assumption \(x < y < z \) in (1)

We get \(x^m - x^m < z^m - x^m \) (since \(y < z \)) \(\rightarrow (3) \)

Adding (2) & (3) we get the result \(x^m + y^m < z^m \)

B) It may be proved also, multiplying (1) by \((xyz)^{m-2} \)

\[
\cdot x^2 + y^2 = z^2 \Rightarrow x^2 (xyz)^{m-2} + y^2 (xyz)^{m-2} = z^2 (xyz)^{m-2}
\]

(C) Case 2 : \(x^2 + y^2 < z^2 \) where \(x < y < z \)

\[
\rightarrow (4)
\]

Multiply equations (4) on both sides by \(x^m-2 \)

\[
x^m x^2 + y^2 x^{m-2} < x^m z^2 \quad \rightarrow (5)
\]

Since from the assumption \(x < y < z \)

We get \(x^m - x^m < z^m - x^m \)

Also \(y^2 (y^m - x^m) < z^m - (z^m - x^m) \) (since \(y^m < z^m \) \(\rightarrow (6) \)

Adding (5) & (6) we get \(x^m + y^m < z^m \)

\[
\Rightarrow x^m + y^m \neq z^m
\]

(D) It also proved as from inequality \(x<y<z \) for our assumption \(x^2 + y^2 < z^2 \)

\[
\Rightarrow x^2 < y^2 < z^2
\]

\[
\Rightarrow z^2 - (x^2 + y^2) < z^m - (x^m + y^m) \quad \text{(since m>2)}
\]

\[
\Rightarrow x^m + y^m < z^m
\]

(E) case : 3

\[
x^2 + y^2 > z^2 \quad \text{where} \quad (i) x>y > z
\]

\[
(ii) z>x & y>z
\]

\[
(iii) y>x & z>y
\]

The above inequality is the back bone for this problem. We have to prove that for our above assumption in another way.

F (i.e) consider \(x^2 + y^2 > z^2 \) \(x<y<z \) & \(y<z \)

Let it be assumed to be such that \(x^2 + y^2 > z^2 \)

alters to \(x^3 + y^3 = z^3 \) for \(m=3 \)

If \(x_1, y_1, z_1 \) are of a phythogorian triplet then \(x_1^2 + y_1^2 = z_1^2 \)

Multiplying the above result by a on both sides \(ax_1^2 + ay_1^2 = az_1^2 \)

It may be proved as in a different manner \(V_1(\text{cube}) + V_2(\text{Cube}) = V_3(\text{cuboid}) \) of Square base \(x, y, z \)

\[
\Rightarrow \text{Height } a \quad a
\]

Now \(x^3 + y^3 = z^3 \)

(i.e) \(V_1(\text{cube}) + V_2(\text{Cube}) = V_3(\text{cuboid}) \) of Square base \(x, y, z \)

Height \(x, y, z \)

As cube may be steaped as cuboid we have \(V_1(\text{cube})=V_1(\text{cuboid}) \) and so on. \(\cdot \)

\[
x^3 = ax_1^2, \quad y^3 = ay_1^2, \quad z^3 = az_1^2
\]

\[
\cdot \text{Certainly } (x^3, y^3, z^3) = d \quad \text{and} \quad a | x^3, y^3, z^3
\]

\[
\Rightarrow x^3 / a = x_1^3, \quad y^3 / a = y_1^3, \quad z^3 / a = z_1^3
\]

\[
\cdot x_1^3 / a = x_1^3, \quad y_1^3 / a = y_1^3, \quad z_1^3 / a = z_1^3
\]

\[
\cdot x_1^3 + y_1^3 = z_1^3 \quad \text{and}
\]

\[
\cdot \text{Now add that to the identity}
\]

\[
\]

\[
\begin{align*}
\text{ISSN :} & \quad 2454-2415 \text{ Vol. 6, Issue 5, 2018 May, 2018 DOI 11.25835/IJIK-28 www.doie.org}
\end{align*}
\]
CONCLUSION

So for we have seen how continued fractions solves the Diophantine Equations in the Applied Mathematics. Thus Applied Mathematics without Pure Mathematics has no root and Pure Mathematics without Applied Mathematics leaves no fruit.

REFERENCES

3. T.nagell, introduction to number theory, wiley, newyork, 1951, nr 13, 207.
4. B.r.panday, a proof of fermat’s last theorem, tme, volume xxix, no.4, december 1995.
6. A.m.s. Ramasamy, polynomial, solutions of the pell’s equation, ijpam, volume 25, no.6, june 1994.